A Tale of Two Shales Marcellus and Utica Mudrocks

Geoscience Contributions to Well Architecture Key Parameters to Evaluate and Optimize Productivity

Timothy Carr, Guochang Wang and Taylor McClain

Successful Mudrock Plays

 Function of Drilling Intensity and Cost Reductions
 Technology can reduce cost and increase production

 Steerable Rotary Bits
 Length and Optimal Placement of Wellbores Direction and Spacing
 Number and Placement of Stages and Clusters
 Better Definition of Most Productive Core Areas Concentrate Drilling Effort Then Push Beyond

* Better Definition of Target Zones

Ability to Stay in Zone

• Geoscience Contribution to Well Architecture

Slide 3 **Successful Mudrock Plays Key Geologic Parameters** • Understanding Resource, Reserves & Productivity Subtle Changes Mudrock Reservoir Properties Distribution of Organic Content ***** "Fracability" Mineralogy Containment Structural Discontinuities Faulting and Geosteering * Present Stress Regime / Past Stress Regimes Stimulated Reservoir Volume **#**Maturity Fluid/Gas Type Influence on Reservoir Porosity and Permeability

North America Mudrock Basins

Slide 4

http://www.unconventionalenergyresources.com/

North America Mudrock Basins

http://www.unconventionalenergyresources.com/

North America Mudrock Basins

http://www.unconventionalenergyresources.com/

Marcellus Horizontal Wells Through 2012

Northern Appalachian Annual Gas Production

Northern Appalachian Producing Gas Wells

Northern Appalachian Annual Liquids Production

Northern Appalachian Producing Liquids Wells

Appalachian Unconventional Gas Production

Appalachian Unconventional Liquids Production

Predicting Mudrock Lithofacies

Geologic Setting and Database

Slide 17

Lithofacies Identification - Core

Lithofacies Identification - PNS

Pulsed Neutron Spectroscopy Log Suite (PNS Log)

Lithofacies Identification Derived Input Log Parameters

Slide 19

Uranium Concentration: Spectral Log
Shale Volume: V_{sh}
RHOmaa – (RhoB- Φ_t)/(1- Φ_t)
Umaa: (PE * RhoB-0.5)/(1- Φ_t)
Φ_t: Average of DPHI and NPHI
PHIdiff: DPHI – NPHI
LnRt: Natural Log of Deep Resistivity
GR/RhoB

Lithofacies Identification Artificial Neural Network - ANN

Lithofacies Identification

Lithofacies 3D Modeling

Wang and Carr, in press

Slide 23

Marcellus Brittle Lithofacies

Wang, 2012

Marcellus Organic-Rich Lithofacies

Productive Horizon Distribution

Maturity - Porosity Slide 30 Nanometer Pores and Methane Molecules

Bohacs et al. 2013, IPTC 16676

Maturity - Porosity

Barnett Shale from the Gas Window

Bohacs et al. 2013, IPTC 16676

Marcellus Shale

Marcellus Shale from the Gas Window

JPT, April, 2013

Utica – Point Pleasant Interval Wet Gas Window

Utica Shale - Point Pleasant Interval

Maturity - Porosity

Woodford Shale from the Oil Window

Bohacs et al. 2013, IPTC 16676

Size of Cations and Hydrocarbon Molecules

From Bohacs et al. 2012 and after Momper, 1978

Utica-Point Pleasant Organic-Rich Interval

McClain, 2013

Utica-Point Pleasant Organic-Rich Interval

Organic-rich strata focused in sub-basin

Clean carbonates on platforms

Slide 37

McClain, 2013

Utica Porosity and Maturity

Slide 38

Modified from McClain, 2013

Maturity - Normalized Oil Content

McClain, 2013

Utica Maturity Normalized Oil Content

Modified from McClain, 2013

Utica Activity and Production

IP VALUES AS REPORTED TO THE STATE ON COMPLETION REPORTS. BARRELS OF OIL EQUIVALENT (BOE/D) CALCULATED AS 6 MOF NATURAL GAS PER DAY EQUALS 1 BOE/D. IP VALUES GREATER THAN 300 BOE/D ARE POSTED.

Pete MacKenzie

Slide 42

Successful Mudrock Plays Key Geologic Parameters • Understanding Resource, Reserves & Productivity Subtle Changes Mudrock Reservoir Properties Distribution of Organic Content ***** "Fracability" Mineralogy Containment Structural Discontinuities Faulting and Geosteering * Present Stress Regime / Past Stress Regimes Stimulated Reservoir Volume **#**Maturity Fluid/Gas Type Influence on Reservoir Porosity and Permeability

Email: tim.carr@mail.wvu.edu

