Constraining Estimates of In-place Resources and Recovery Efficiency using Production Data

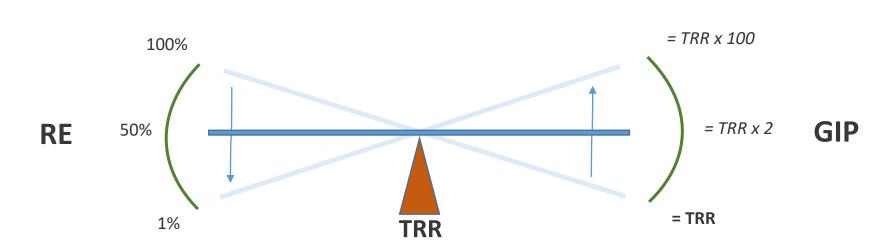
An Example from the Marcellus Play in Northern West Virginia

Ray Boswell DOE/NETL

B.J. Carney Northeast Natural Energy

Susan Pool West Virginia Geological and Economic Survey

Appalachian Geological Society, November 12, 2019

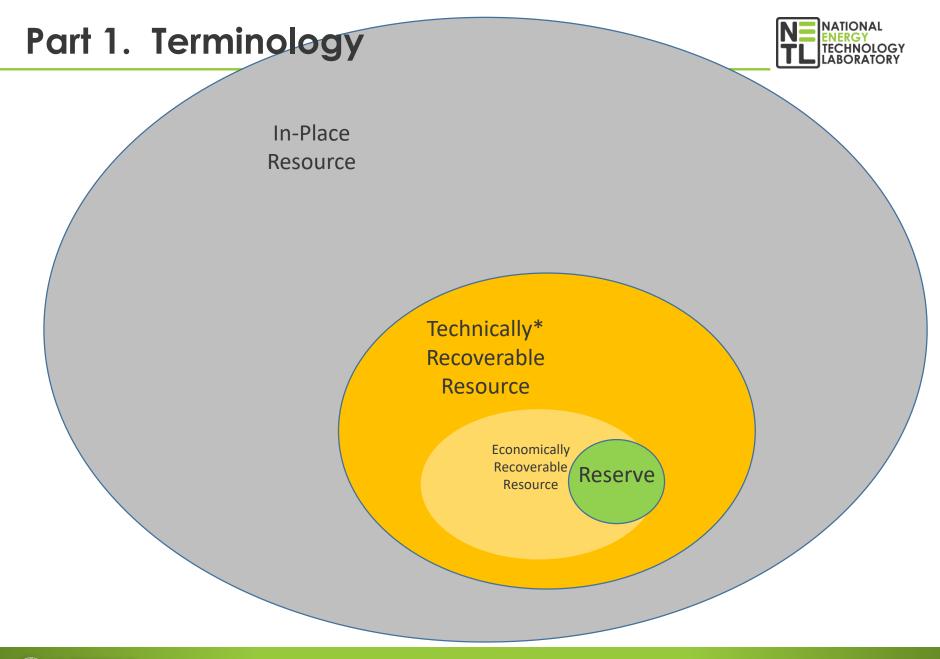


Introduction: Recovery Efficiency

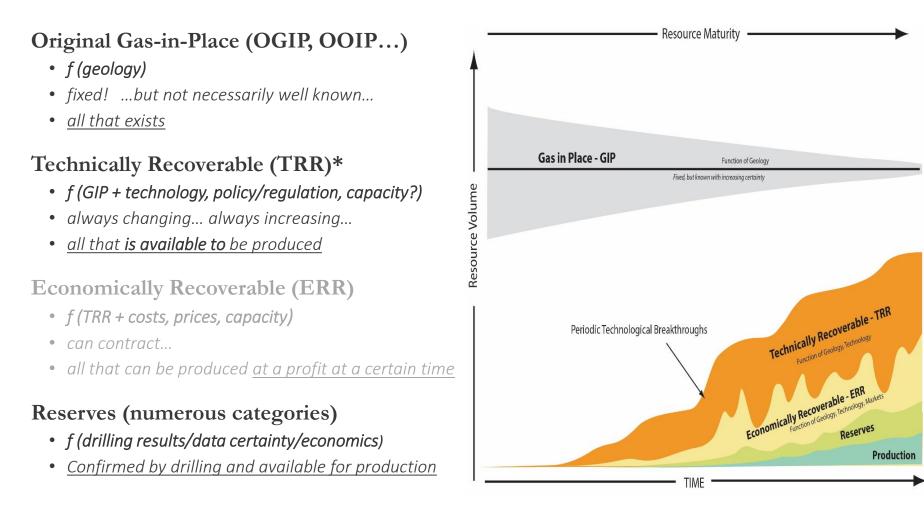
RE = TRR / In-Place Resources

- **Recovery Efficiency:** Many assume **RE** is low, but evidence is anecdotal.
- **Technically-Recoverable Resources:** Several public-domain assessments, but they do not agree. Relies on ability to estimate the Estimated Ultimate Recovery (and spacing) of current and future wells.
- In-Place Resources: A deceptively simple formula, but highly uncertain in unconventional applications. <u>Must be greater than TRR!</u>

The growing database of well histories provides greater confidence in EURs \rightarrow a chance to constrain GIP & RE


Outline

- 1. Define Terminology
- 2. Review existing assessments of resources and recovery for Marcellus development
- 3. Review our approach to estimating RE in northern West Virginia
- 4. Show that, using standard approaches, <u>wells appear</u> capable of producing more gas than was thought to be in the ground. ie TRR > GIP
- 5. Discuss potential explanations...
- 6. ... and some very initial findings



ENERGY *practically

Part 1: Terminology 1/2 4

Resources Volumes are Not Static

* most commonly assessed (often as remaining TRR) – but often includes inherent economic assumptions....

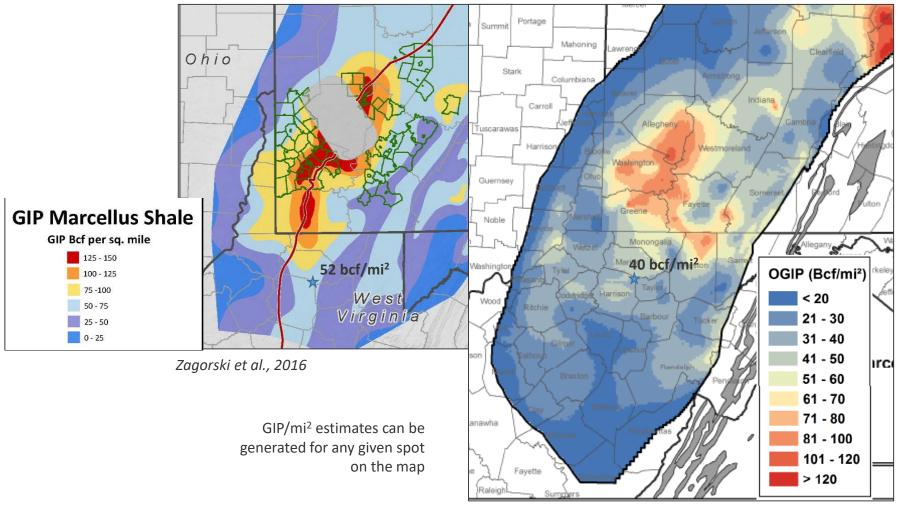
Part 2: Marcellus Assessments

2020

2020

2000 - present

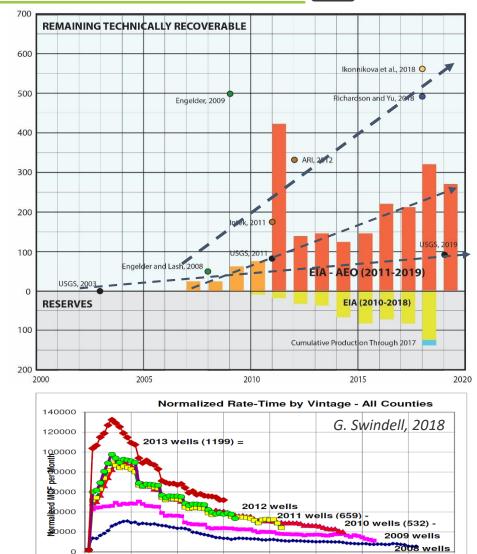
		3500
IN PLACE RESOURCES	2,227 Tcf (UT-BEG, 2018)	
	1,313 Tcf (Richardson & Yu, 2018)	2500 Zagorksietal., 2017
	2,686 Tcf (Zagorski et al., 2017)	Navigant, 2008 ARI, 2009
	2,912 Tcf (ARI, 2012)	1500 Richardson and Yu, 2018
	1,500 Tcf (Navigant, 2008)	Engelder and Lash, 2008
	512 Tcf (Lash and Engelder, 2008)	500 ₂₀₀₀ 2005 2010 2015
	~250 Tcf (NPC, USGS, early 1990s)	700 REMAINING TECHNICALLY RECOVERABLE
REMAINING	96 Tcf (USGS, 2019)	600
TECHNICALLY-	263 Tcf (EIA, 2019, 2018, 2017)	Ikonnikova et al., 2018 O
RECOVERABLE	560 Tcf (UT-BEG, 2018)	500
RESOURCES	492 Tcf (Richardson & Yu, 2018)	Engelder, 2009 Richardson and Yu, 2018
	~330 Tcf (ARI, 2012)	400
	84 Tcf (USGS, 2011)	
	498 Tcf (Engelder, 2009)	300
	50 Tcf (Engelder and Lash, 2008)	
RESERVES	124 Tcf (EIA, 2018)	200 100 100 100 100 100 100 100 100 100
PLAY-SCALE RECOVERY EFFICIENCY	 25-30% (UT-BEG, 2018) 37-48% (Richardson & Yu, 2018) 9% (OGJ, 2014) 11% (ARI, 2012) 	100 Engelder and Lash, 2008 EIA - AEO (2011-2019) 0 RESERVES EIA EIA EIA (2010-2018)
SMALL-SCALE RECOVERY EFFICIENCY	10% (Seals et al., 2017) from SRV50% (inferred from Industry data)	100 Cumulative Product on Through 2017 200 2005 2010 2015


TCFG

GIP/mi²: Public-Domain Marcellus Est.

Range Resources (2016, 2017) -- UT BEG (2018)

Ikonnikova et al., 2018



Marcellus Shale TRR Assessments (Gas)

2000 - present

- TRR is the goal of public-domain assessments (USGS, EIA)
- Expected expansion is noted but disparity between assessments appears to be increasing
- TRR = EUR/Well * Number of remaining well locations
- Because EUR is a f(technology) -- which is a f(time)... past well performance will understate future well performance; (particularly true in unconventionals)
- No mapped assessments of TRR to allow comparison to areal GIP/mi² data.

0

12

24

36

60

72

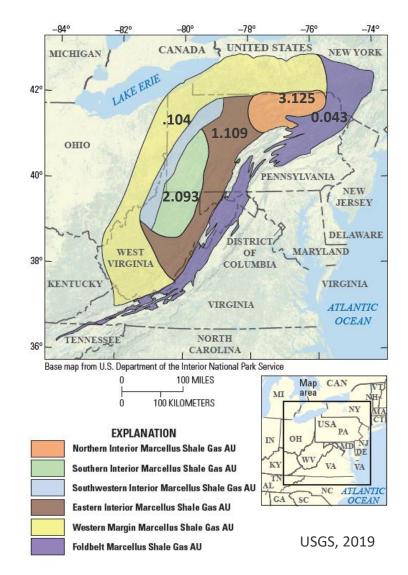
84

96

48

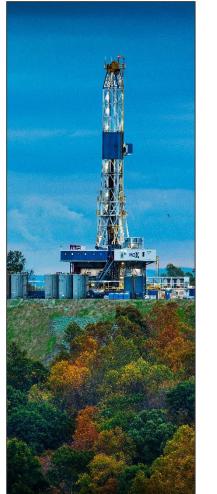
Months

Quick USGS – EIA Comparison


2019 Remaining TRR assessments

USGS (2019) 96.5 Tcf mean

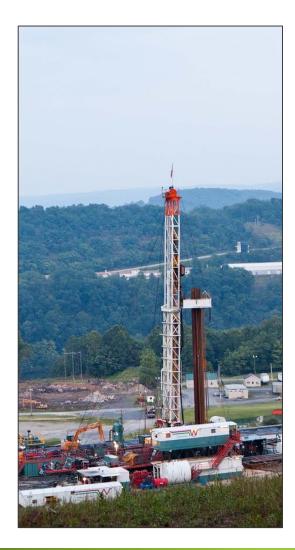
- 11.4 million acres remaining productive
- Spacing is 1 well per 146.7 acres
- EUR = 2.093 bcf/well in N. WVa
- EUR is fixed.


EIA (2019) 262.5 Tcf+ (2017)

- 18 million acres
- Spacing is 1 well per 148 acres
- EUR = 2.425 in N WVa.
- EUR allowed to grow (1%+/yr)

- General consensus on regional Marcellus GIP → 2,000 to 3,000 Tcf & two independent sources for GIP at any location
- No general consensus on regional Marcellus TRR \rightarrow 90 to 560 Tcf
- Therefore, current information does not allow reasonable assignment of RE, nor provide any insight on how it might vary spatially....

90 TRR / 3,000 GIP = **3% to** 560 TRR / 2,000 GIP = **28%** (regional averages only)


- Potential sources for variances in TRR include:
 - 1. Selection of wells to use in calculation of future EUR
 - 2. Uncertainty in translating production data to EUR
 - 3. Determination of total play area...

Part 3: Approach to constrain RE

RE = EUR/In-Place IN WHAT SPECIFIC VOLUME ...?

<u>Well</u>: RE = EUR/in-place <u>in a single SRV</u>

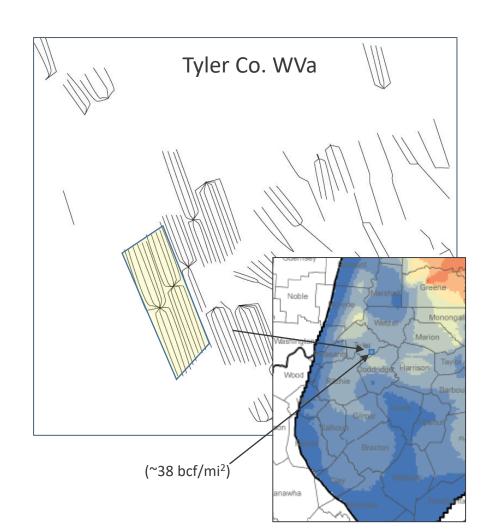
- *f* (geology, technology)
- Likely to yield highest but most variable, unconstrained RE

<u>Pad(s)</u>: RF = Sum of EURs/in-place in a multi-well SRV

- *f* (geology, technology, well spacing, lease geometry)
- Often drilled over a short period of time by one operator using consistent approach and with goal to fully drain a specific area

<u>Play/Basin</u>: RF = Sum of EURs/in-place in Play

- f (geology, technology, well spacing, lease geometry), plus variable
- ... reservoir quality, pressure, etc....
- ... operators, w/ different views on technology, spacing, etc...
- ... regulatory environments...
- Hence lowest and least meaningful RE's... ("10%")



Part 3: Method to Assess RE 2/4 12

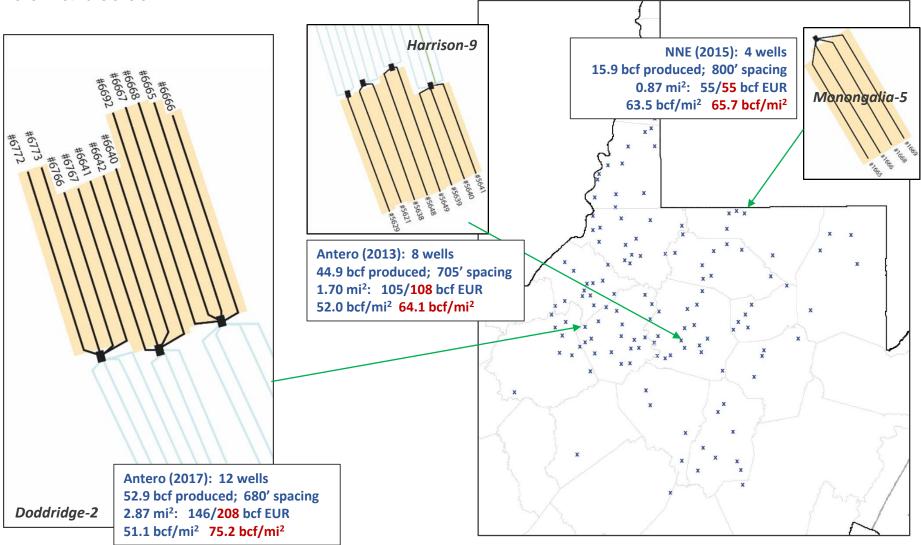
Recovery Efficiency: Approach

RE = EUR/GIP per unit area at Pad/Lease Scale

- Identify sites that appear to be fully developed (at likely ultimate spacing).
 - Common operator with common completion approach (vintage).
- Determine Total Area (mi²) for each
 - = sum of lateral length X spacing
- Sum all well EURs \rightarrow TRR for each
- Convert to TRR/mi²
- Compare to two existing GIPs/mi² estimates for that location to calculate recovery efficiency.
- Repeat for 157 such sites and map...

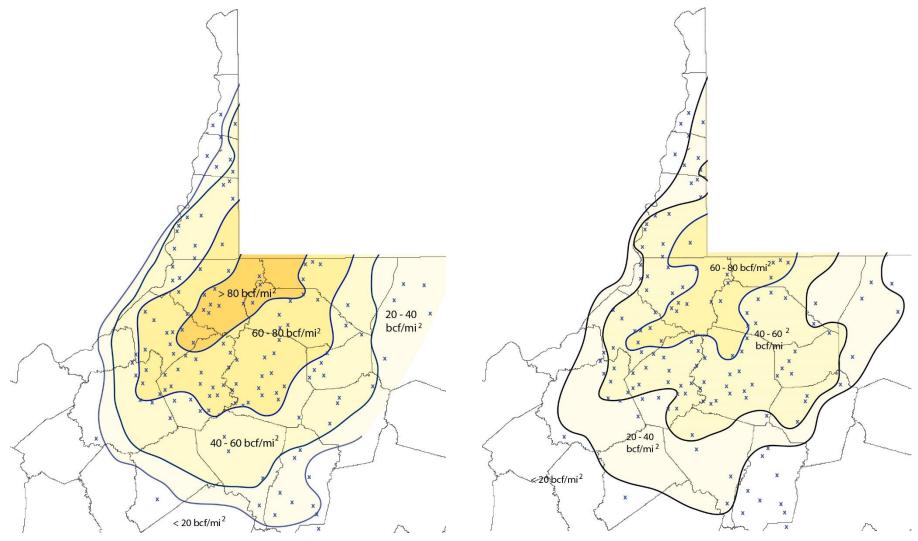
Example EUR Datasets

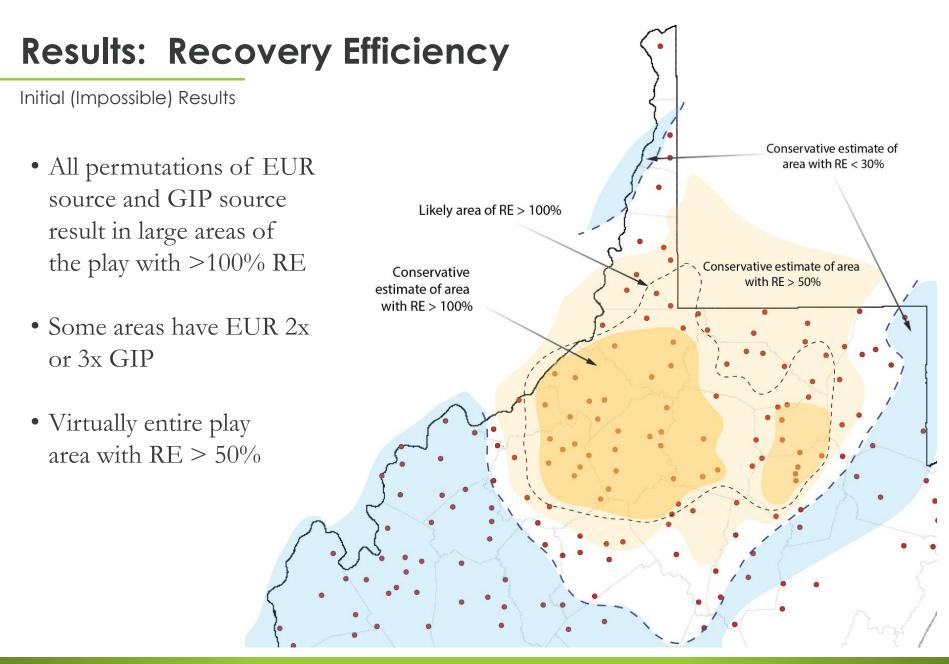
Case Studies: Tyler Co. WVa

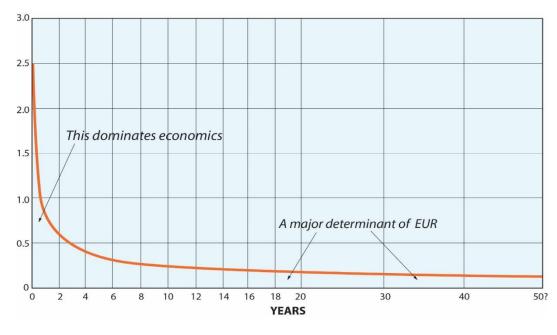

	A		C D	E		J	К	M N O P
()	1		perator County		lorizontal Length N			R Oil (BE) EUR Gas (BE) Total EUR EUR B-Factor
)	701	4709502171 Antero		7/6/2017	8456.12	18	3.4755	87
157 EUR sites	702	4709502265 Antero		7/10/2017	8661.98	18	3.4744	29
(910 wells: $\int_{x}^{x} x$ X Sites with EUR	703	4709502269 Antero		6/28/2017	8322.19	18	3.6991	31
	704	4709502270 Antero		7/2/2017	8215.98	18	3.2945	13
av. 6 wells	705	4709502275 Antero		6/23/2017	8310.48	18	2.9973	42
per site) × ×	706	4709502306 Antero		6/19/2017	7610.06	18	3.6471	97
	707	4709502307 Antero		6/15/2017	13293.68	18	5.9688	
) x	708	4709502308 Antero		7/14/2017	7280.16	18	3.3652	41
x ^x	709 710	4709502277 Antero 4709502254 Antero		11/26/2016	11433.99	25 25	2.2657 2.2787	97
	710	4709502254 Antero 4709502293 Antero		12/13/2016 12/7/2016	11578.84	25	1.9439	/5
	712	4709502295 Antero		12/2/2016	10746.95 10538.3	25	2.5938	29
x x	713	4709502204 Antero		11/19/2016	10558.5	25	4.6904	
C	714 3	4709502335 Antero		12/6/2016	11026.09	25	2.4507	40
۲ (۲	715	4709502336 Antero		12/12/2016	10935.71	25	2.6784	12
(x x x)	716	4709502337 Antero		12/1/2016	10753.61	25	1.9164	10
	717	4709502338 Antero		11/26/2016	10778.84	25	2.4011	51
X X X X	718	4709502276 Antero		11/20/2016	10463.7	25	2.3603	33
x x x x x	719	4709502172 Antero		4/17/2016	10926.43	33	5.0148	2
X X X X X	720	4709502173 Antero		4/23/2016	10594.72	33	4.9445	83
x x x x x x x x	721	4709502174 Antero		4/23/2016	10154.78	33	5.9219	49
x x x x x x	722 4	4709502169 Antero		4/4/2016	11587.76	33	5.2221	31
x x x	723	4709502181 Antero		4/18/2016	12574.76	33	5.7807	75
XXXX X	724	4709502182 Antero		4/11/2016	12231.12	33	6.1115	47
X X X X X	725	4709502183 Antero		4/2/2016	11531.59	33	5.8985	09
x x x x x x x x	726	4709502032 EQT	Tyler	2/13/2013	6716.91	31	2.8445	2
X X X X	727	4709502176 EQT	Tyler	7/15/2015	6706.18	27	2.1931	17
x x x x x x x	728	4709502177 EQT	Tyler	7/15/2015	8129.39	28	2.777	92
x x x x x x x x x	729	4709502178 EQT	Tyler	8/1/2015	7175.51	27	2.1002	37
x x x x x x x x x	730	4709502348 Antero	p Tyler	11/22/2017	8708.24	8	0.8676	91
x x x x x x x x x x	731	4709502349 Antero	p Tyler	11/22/2017	8531.25	8	0.8543	2
x	732	4709502350 Antero	p Tyler	3/27/2018	9518.81	8	1.6132	2
	733	4709502354 Antero	p Tyler	4/17/2018	9175.34	8	1.474	2
x	734	4709502372 Antero		3/21/2018	9168.16	8	1.6399	2
x x	735	4709502374 Antero		3/19/2018	9024.46	8	1.9611	97
X	736	4709502040 Triad H		11/14/2013	5370.96	49	3.8866	68
	737	4709502041 Triad H		11/14/2013	5952	49	4.202	42
x x	738	4709502042 Triad I		11/13/2013	6268.67	49	4.1283	57
The X	739	4709502043 Triad I		11/12/2013	7043.81	49	4.8255	87
x x x	740	4709502096 Jay-Be		4/26/2014	7467.73	56	3.8174	2
X X X	741 8	4709502097 Jay-Be		4/22/2014	6790.28	56	3.8667	11
	742	4709502098 Jay-Be		4/22/2014	7118.45	56	4.0166	73
	743	4709502282 Antero		9/14/2017	8960.45	14	2.0524	2
	744	4709502283 Antero		1/31/2018	8939.27	11	2.1307	82
	745 746	4709502284 Antero 4709502285 Antero		9/6/2017	8843.14	14	2.3805	39
	/46	1		9/11/2017	9828.66	14	2.8865	
		 Select Area S 	Summaries Play A	Wells Vintage (Ohio River Play B	Wells	Vintage - Tyler (Co Vintage NW Dodd Co. Vintage - SW Doddridge

Example EUR sites

3 of 157 studied




Part 4: Initial Results



Part 5: Explanation: EUR too high?

Uncertainties: Reservoir Behavior, Well Life Assumption, and Spacing

- EUR approaches differ, but nature of decline is generally agreed upon...
- Ultimate recovery is not yet observed for Marcellus wells
 - EURs will become increasingly reliable with time and experience.
- A primary source of uncertainty...how long will the wells produce? (20 years? 50 years?).
- Another source of confusion... variable spacing and lateral lengths complicate conversion of EUR/well into EUR/mi²
- Two independent EUR sources used.



Explanation: GIP too low?

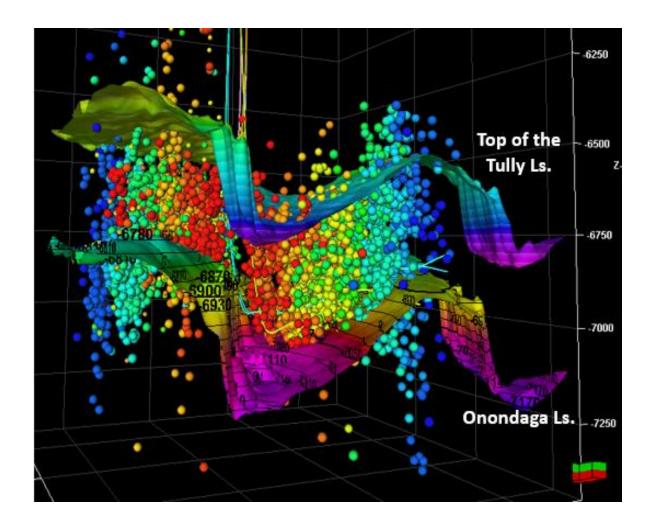
A very likely culprit

- GIP assessments (ex. Zagorski et al., 2016) acknowledge conservative nature of GIP values...
- The simple GIP equations are anything but simple in the shale context...

GIP (total) = GIP (free) + GIP (adsorbed)

GIP(free) = Volume (Area x Thickness) x Porosity x HC Saturation x FVF GIP(adsorbed) = Volume (Area x Thickness) x Density x Gas Content (isotherm)

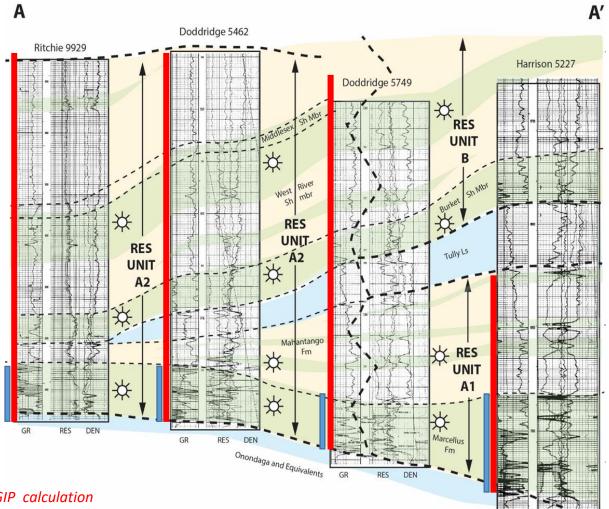
• Common practice generally results in a conservative treatment for each GIP parameter



Volume: What is H? (thickness)

GIP(free) = Volume (Thickness x Area) x Porosity x HC Saturation x FVF

- Gradational vertical contacts between pay and non-pay. There is no "non-pay"
- Stimulation and production readily extend beyond target unit's lithostratigraphic boundaries

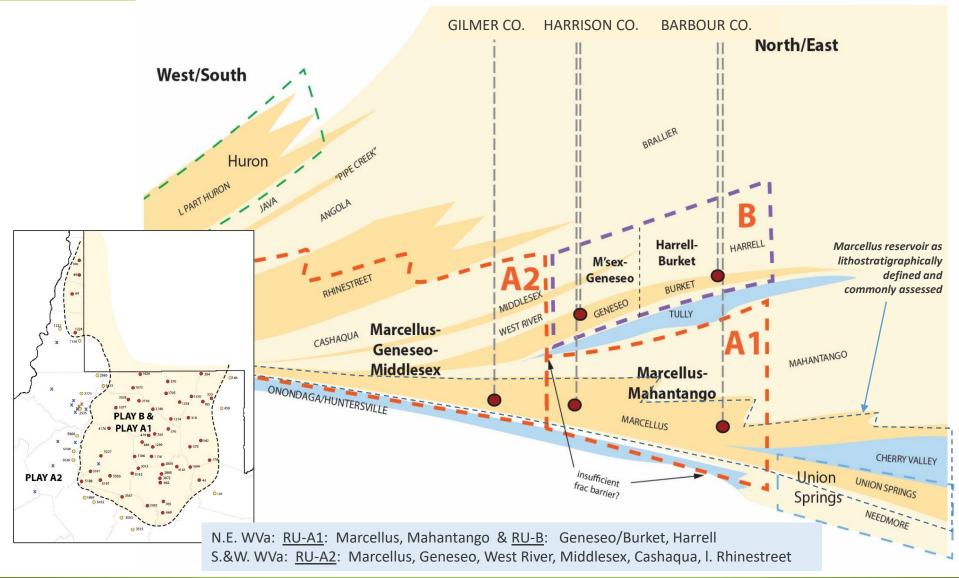


GR Cross-section

NATIONAL ENERGY TECHNOLOGY LABORATORY

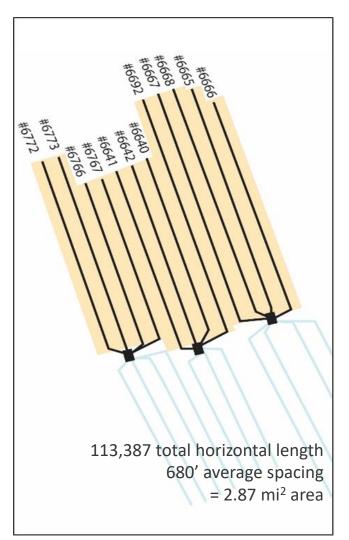
North Central West Virginia

- For this study, we extend 300' above the top of the Marcellus.
- UNLESS there is a strong upper frac barrier (Tully both thick and separated from the Marcellus)
- Assume lower frac barrier is good unless reported otherwise (ex. Braxton Co.)


Modified "H" for Marcellus Reservoir Unit GIP calculation

Standard "H" for Marcellus GIP calculation

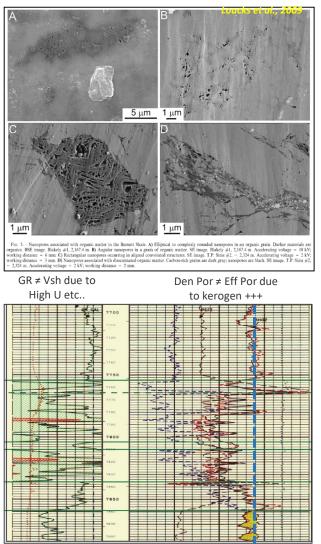
WV Shale "Reservoir Units"



Volume: What is Area?

GIP(free) = Volume (Thickness x Area) x Porosity x HC Saturation x FVF

- Area = spacing x lateral length.
- Length calculation is meant to include all the acreage that has been removed from further consideration as future drilling target.*
- Lateral extent of volume within a multiwell development is constrained by the next well laterally.
 - Where wells are drilled at a common or similar level (not vertically stacked)



Porosity

GIP(free) = Volume (Thickness x Area) x Porosity x HC Saturation x FVF

- Complex to estimate from logs
 - multiple modes and scales of porosity
 - dynamic porosity with gas generation & pressure reduction
 - kerogen correction needed: kerogen density is variable
- Perhaps not readily determined from standard core analysis
 - fine fracture porosity?
 - in situ behavior difficult to duplicate in the lab...
- Density logs can read to 20% or more...
 - set local porosity maxima as measured in in-gauge boreholes.
 - use density porosity both uncorrected and with kerogen correction...

Other Key Parameters

GIP(free) = Volume (Thickness x Area) x Porosity x HC Saturation x FVF GIP(adsorbed) = Volume (Area x Thickness) x Density x Gas Content (isotherm)

Saturation is just as messy

- Not readily calculated from logs (corrections needed for V_{sh} and V_{ker} (which require core)
- Not readily determined from cores S_w exaggerated by drilling-emplaced fluids (Douds et al., 2017).
- Assumption = fix at low value (i.e. 15%?)

Formation Volume Factor (FVF)

- Converts volumes at depth to volumes at STP
- In Situ P and T are complex to measure
- May be complex local pressure distributions...
- Complicated by complex hydrocarbon chemistries and thermodynamics in nano-scale pore spaces

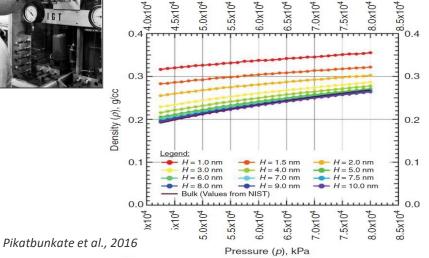
Adsorbed gas content (scf/ton)

- Poorly known; Few public domain datapoints.
- Generally assumed through analogues.

First public domain gas content measurement from Marcellus Shale – 1979 DOE EGSP Program

Sorbed Mass

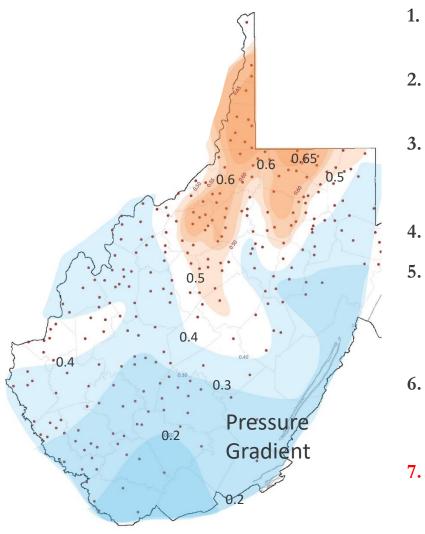
Measured by


Adsorption

Experiment

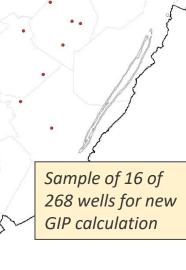
Sorbed Mass Measured by Adsorption Experiment

Comparison of Densities of Methane in Different Sizes of Confined Space and Bulk Methane at T = 385 K

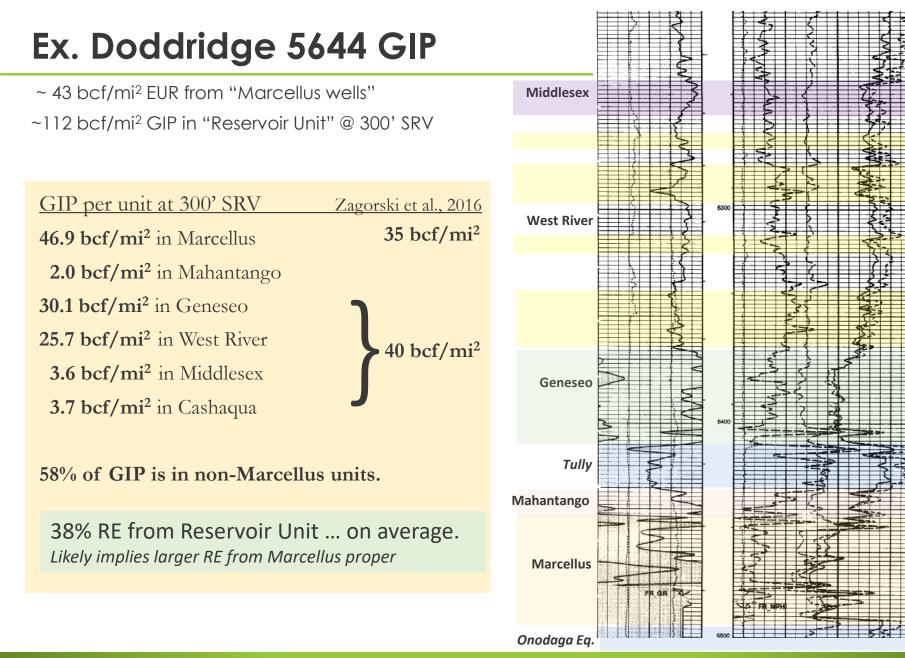


Part 6: New WVGES-NETL GIP Estimation

Update of WVGES, AAPG 2013.

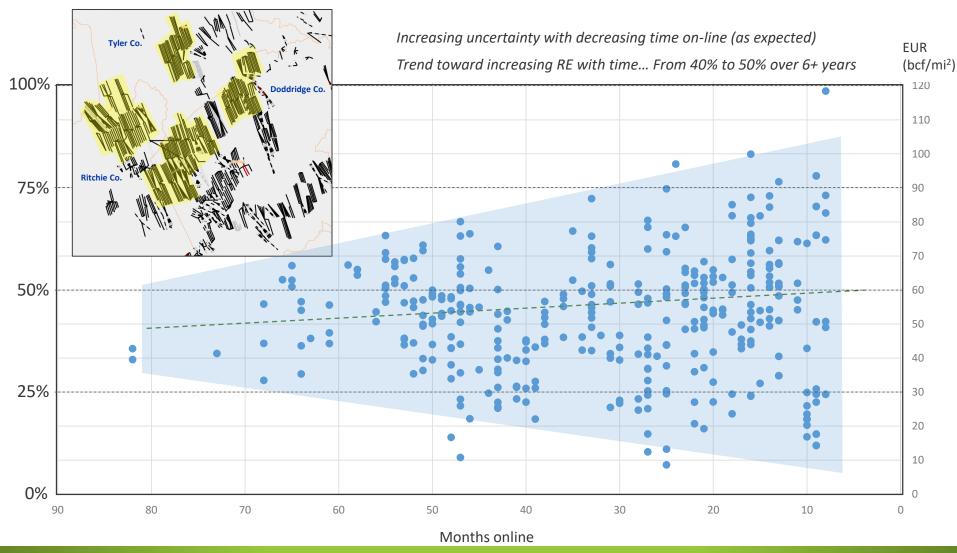

- 1. Volume: Expansion to include flow units (+++). This is likely a major source of GIP underestimation in WV
- 2. **Pressure/Temperature:** WVGES Oil and Gas (as reported by operator) new data. (++)
 - **Porosity:** From Logs: bulk density with variable grain density. Alternative with and without variable kerogen density correction. (+)
 - **Saturation:** Set at consistent low value (15%)? (+)
 - **Formation Volume Factor:** Gas density correction for small pores (+) and Ambrose correction (-) deferred at present... (need pore size distribution information to implement)
- 6. Adsorbed Gas: TOC from logs from multiple methods (GR, DEN, RES) converted to GC; calibration to EGSP/MSEEL data (working...)
- 7. Multiple Scenarios to be run to assess sensitivity to assumptions (Sw, Adsorbed gas, RU height, etc...)

Preliminary (!) GIP/RE Results


Play A1/A2 only; Marcellus Reservoir Unit

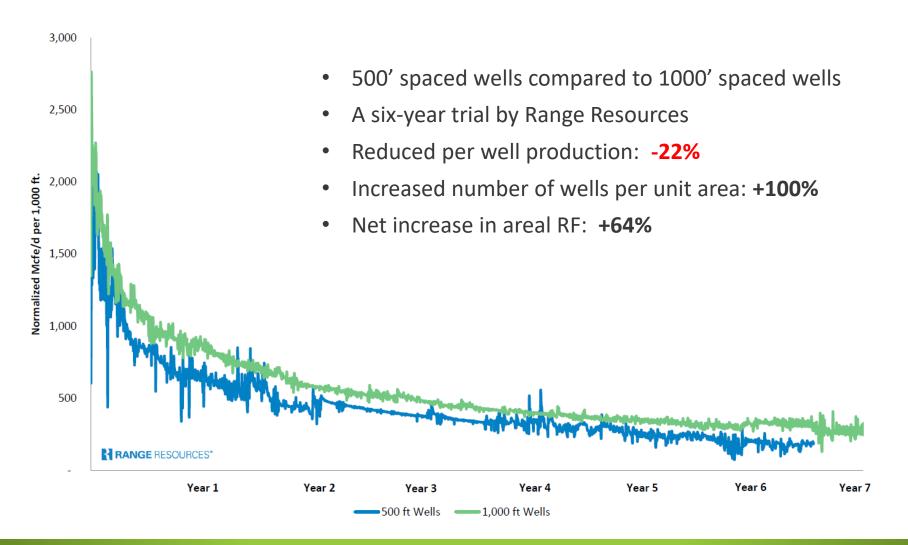
County	Well	Ave Pub. GIP*	Ave Est. EUR*	Est RE	WVGS GIP* Case A	Case A RE	WVGS GIP* Case B	Case B RE	Case B Marcellus Share of RU GIP
1 - Barbour	662	36	48	133%	65	74%	58	82%	81%
2 – Harrison	5227	48	61	127%	138	44%	123	50%	66%
3 – Taylor	646	44	45	102%	133	34%	119	38%	69%
4 – Taylor	576	38	44	116%	135	24%	123	27%	63%
5 – Monongalia	1705	47	50	107%	137	36%	123	41%	65%
6 – Marshall	1224	58	40	69%	85	47%	75	53%	72%
7 – Ohio	64	63	33	52%	109	30%	97	34%	76%
8 – Lewis	3703	33	55	182%	110	55%	95	63%	48%
9 – Doddridge	2909	33	69	209%	183	38%	166	42%	44%
10 – Doddridge	5638	47	51	109%	129	40%	113	45%	41%
11 – Doddridge	5644	30	43	143%	128	34%	112	38%	42%
12 – Ritchie	4832	27	45	167%	194	23%	181	25%	54%
13 - Tyler	1121	29	62	214%	201	31%	189	33%	38%
14 – Wetzel	644	43	27	63%	159	17%	147	18%	54%
15 – Gilmer	4332	25	13	52%	103	13%	89	15%	43%
16 - Kanawha	5307	~10	N/A		52		47		34%

Case A: Sw = 0.15/0.35; H(A2) = 300'; Porosity = No Correction; FVF = No Correction; Adsorbed Gas = "conservative" **Case B:** Includes initial Porosity (Kerogen) Correction.



Add'l Results: RE with Time

365 wells in Doddridge-Tyler-Ritchie Co.: Play A2: Assuming 120 bcf/mi² GIP



Add'l Results: Spacing

1,000' compared to 500' well spacing: Marcellus Shale: Range Resources

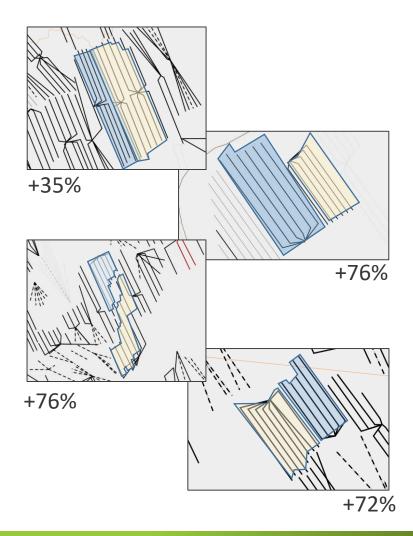
Spacing Examples

Most "efficient" not necessarily the most economic

NE Marshall Co.: HG Energy (2014-2017)

- 5 wells; 39,864' @ 750' = 1.06 mi^2 Est EUR = 51.8 bcf/mi^2
- 7 wells: 55,496' @ 600' = 1.12 mi² Est EUR = 70.1 bcf/mi²

W. Marshall Co.: HG Energy (2014-2015)


- 6 wells; 57,736' @ 742' = 1.54 mi² Est EUR = 23.1 bcf/mi²
- 6 wells; 39,740 @ 500' = 0.72 mi^2 Est EUR = 40.6 bcf/mi²

C. Doddridge Co.: EQT (2015)

- 12 wells; 84,843' @ 980' = 2.99 mi² Est EUR = 36.5 bcf/mi^2
- 6 wells; 39,264' (a) 760' = 1.07 mi^2 Est EUR = 64.1 bcf/mi²

Ritchie Co: Antero (2016-2017)

- 12 wells; 109,783' @ 1000' = 3.94 mi² Est EUR = 46.4 bcf/mi²
- 8 wells; 63,236' @ $670' = 1.52 \text{ mi}^2$ Est EUR = 79.9 bcf/mi²

Summary: Marcellus RE in WV

KEY FINDINGS:

- 1. RE appears very high (>100%) over large areas using extant estimates of 50-yr EURs and GIPs.
- 2. Hypothesis #1: low GIP is primary factor driving this erroneous result.
- 3. Hypothesis #2: limited reservoir volume is primary cause of low GIP
- 4. Extending volume to 300' (or Frac Barrier) does not fully address the problem...porosity and gas saturation underestimation likely need to be factored (to arrive at 50% RE...)
- 5. EURs will need to be continuously refined/monitored...
- 6. Preliminary data indicate general increase in RE with time.
- 7. RE improves with reduced well spacing. (However, spacing has a strong impact on costs and economics).

Thank You

