Lithostratigraphy of Middle and Upper Devonian Organic-Rich Shales in W. Virginia

Appalachian Geological Society, September 11, 2018

Ray Boswell (DOE-NETL) and Susan Pool (WVGES)

WVGES Reports of Investigation 35

Boswell, R.; Pool, S., 2018

- Ongoing resource assessment revealed unsettled formal nomenclature for many Upper and Middle Devonian shale units.
- Well-established stratigraphy exist on the east and on the west, but uncertain how to merge them in the basin center.
- Issues particularly with respect to the Marcellus and the Geneseo/Burket units.
- 3-part release planned:
 - Part 1: Base data and lithostratigraphy (WVGES RI-35)

http://www.wvgs.wvnet.edu/www/MUDvnnSh/MUDvnnSh.htm

- Part 2: Updated GIP for multiple units (TBD)
- Part 3: Assessment of recoverable resources and recovery efficiency (TBD)
- WVGES RI-35 contains multiple products...

Interactive Mapping Application

http://www.wvgs.wvnet.edu/gis/og/MUDvnnSh/index.html

Downloadable Cross-Sections

West Virginia Geological & Economic Survey

Home >> Middle and Upper Devonian Stacked Shales

Google Custom Search

Q

Lithostratigraphy of Middle and Upper Devonian Organic-Rich Shales in West Virginia - Reports of Investigation RI-35

Page last revised May 17, 2018.

Please send web site questions, comments, or suggestions to webmaster.

Spreadsheet of Project Data

Stratigraphy

In the beginning...

- Biostratigraphy = Stratigraphy
 - Rocks cannot change age laterally!
- 1820s: Amos Eaton
 - The Catskill sure seems to... → Limbo
- 1830s: NY and PA successions developed
 - J. Hall/H. Rodgers: Onondaga-Marcellus-Hamilton-Tully-Genesee-Portage-Chemung-Catskill-Pocono
- 1900s: Eatons' observations persist
 - J. Barrell puts the U Devonian into "deltaic" context
 - G. Chadwick; H. Williams... A crisis of stratigraphy
 - The NY stratigraphy is given precedence of that emerging in WV.
- 1930: A new stratigraphy
 - Lithofacies boundaries are NOT timelines!

BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA
Vol. 46, Pp. 343-354, 2 Figs. FEBRUARY 28, 1935

CHEMUNG IS PORTAGE*

BY GEORGE HALCOTT CHADWICK

INTRODUCTION

A recurring surprise in the progress of the Upper Devonian studies has been the repeated discovery, after a piece of work had resulted in some apparently new stratigraphic correlation, that another worker,

K Caster, 1934

The Stratigraphy and Paleontology of Northwestern Pennsylvania, Part I: Stratigraphy

NORTHWESTERN PENNA .: CASTER

Fig. 2.-Facies components

Evolution of Stratigraphic Nomenclature

U Devonian; N. West Virginia

Diachronous lithostratigraphic contacts

Driller's Units = Chronostratigraphic Units

1940s - 1990

EGSP, etc...

Old terminology slowly replaced

- Portage → Brallier
 (Woodward, 1943)
- Catskill → Hampshire (Butts, 1945)
- Chemung → Greenland Gap (*Dennison*, 1970)

U Devonian Shale section

• "undiff. Devonian", "brown shales"

Eastern Gas Shales Program

- Schweitering, DeWitt et al. track NY stratigraphy south and east into basin center.
- Systems emerges of Fms with paired members; organic-rich at base.

A Resurgence of Chronostratigraphy

AAPG Memoir 26, 1977

- 1970s: What works in deepwater... w/ seismic?
- Organize not around lithology or age, but around the geometric relationships between associated packages (not as evident in log or outcrop).
- Insight on how the rock got there... a new "genetic (sequence) stratigraphy" linked to a process (sea level change) → chronostratigraphy
- Powerful → predictive, interpretative
- Application spreads back onshore... (complex in outcrops/logs due to lack of continuous data).
- So why lithostratigraphy?

Units with <u>very different properties</u> should not have the same name just because they are the same age – i.e. correlative!

NY Marcellus Stratigraphic Studies

Ver Straeten (2007); extended south using log data by Lash and Engelder (2011)

	western to central New York			eastern New York		central and eastern Pennsylvania SW NE		Lash & Engleder, 2011	
Marcellus subgroup	Oatka Creek Fm.	Chittenango Mbr. Cardin Mbr. Solsville Mbr. HH Bed (unc.) East Berne Mbr. Cherry Valley Member Hurley Member	Otsego Mbr. HH Bed East Berne Mbr. Cherry Valley Member Hurley Member Stony Hollow Member Parkoven Member	Dalmatia (Fisher Ridge) Member	is Formation	Oatka Creek Member Cherry Valley Member			
	Union Springs Fm.	Bakoven Member ?		* Marcel	Sham. Why. Shamokin Member	Marcellus	Union Springs Member		

Data and Methods

~400 vertical wells; GR-DEN; relative base line method

Data and Methods

WVGES RI-35

• Establish Lithostratigraphy for West Virginia M.& U Devonian Shales

- Tailored to subsurface data
- Avoid new names
- ... Precedence
- ... Utility
- ... Mapability
- ... Lithologic Consistency

• Recognize the 3-D problem

- Formations need not only top and bottom, but edges
- Clarify lateral transitions, particularly where lithologic units "fade away"
- ...and without using "shazams"

Gradational Lateral Transition

Methods

Lateral lithofacies boundaries

- To the east, the formations to do not pinch out, they fade away.
- The age-correlative interval can still be readily correlated; but that does not mean it is the same lithologic unit!
- Lateral boundary placement fairly arbitrary... If tracing from the west, one would tend to extend the shales further.
- Goal was to place the line near the 50:50 point (non-quantitatively)
- This may look very arbitrary for locations near this line.

Lateral Lithostratigraphic Boundaries

Generic

- Retain the structure of organic-rich shale/organic-poor shale couplets comprising two members of a Formation.
- Those formations are tracked as far east as both upper and lower boundaries exist to differentiate it.
- Upper boundary extent generally controls this.
- Where organic-rich member persists beyond point where overlying member is not mappable, it becomes a Formation (PGS).

Example

West Falls Formation

- Correlative interval has graded into ageequivalent organicpoor shales of the Brallier Fm to east of blue line
- Rhinestreet Shale
 Member of West Falls
 Fm to west of red line
- Rhinestreet Shale (Fm status) between red and blue lines

Example

West Falls Formation

- Angola Member (upper) lateral facies transition (blue line)
- That boundary
 (and eastward limit
 of the Java Fm
 above) is
 determined based
 on the western
 extent of the
 Huron organic-rich
 shale.

Results

Middle and Upper Devonian
Organic-Rich Shale Lithostratigraphy

Younger Shales

Pipe Creek not readily mappable: Java Fm without members

Geneseo/Burket

 Geneseo as far east as Genesee Formation is mapped: Harrell Shale to east

Mahantango Formation

 complex to map individual members - separating limestones very thin and losing character to the south.

Marcellus Formation

- members only mappable to point medial LS member is mapped (LINE C).
- to west, informal units can be mapped but are lithologically very similar (in GR data).

Results

Marcellus lithostratigraphy

- Mbrs only where Cherry Valley can be confidently mapped
- Informal units to the west, delineated by informal and thin "Purcell" and "Cherry Valley" lime-rich driller's units (per deWitt et al., 1993 and some industry practice)
- Unnamed unit at the base: "transition zone"
- Top of Marcellus is progressively younger to the west.

Marcellus Fm

Net Shale Isochore

"transition zone"

- Grades into upper part of the Needmore Shale to the east of blue line
- Where missing –
 Marcellus Onondaga contact
 may represent an
 unconformity
- Where present, the contact may be conformable

Cherry Valley Mbr

- Correlates to several informal low GR/high DEN spikes to the west
- Correlates to the Purcell Mbr in the eastern panhandle

Union Springs Mbr

"lower Marcellus"

Oatka Creek Mbr

"upper Marcellus A"

- Upper portion
- Base is "drillers' Purcell"
- Correlative to Skaneateles Fm of Pennsylvania

Oatka Creek Mbr

"upper Marcellus B"

- Top is drillers' "Purcell" and eq.
- Base is driller's Cherry Valley or Cherry Valley

Mahantango Fm and Tully Ls

USGS Bulletin 1909

DeWitt et al., 1993

PA Stratigraphy

Harper et al., 2017

Geneseo-Burket

- Geneseo Shale
 Mbr of Genesee
 Fm to the west.
- Geneseo Mbr
 overlain by West
 River Mbr of
 Genesee Fm
- Burket Shale Mbr of the Harrell
 Shale to the east.

Middlesex Shale

- Middlesex Shale Mbr of Sonyea Fm west of red line
- Middlesex Shale between red and blue lines
- Correlative interval has graded into Brallier Fm organic-poor shale east of blue line
- Middlesex Sh Mbr
 overlain by Cashaqua Sh
 Mbr of Sonyea Fm

Rhinestreet and Huron Shales

Results

No new names proposed.... some are new to the state (formally)

Marcellus "Formation"

- (non-shale; non-shale members; Fm in PA/NY)
- three Members limited to small area in NE West Virginia; Undifferentiated elsewhere
- use Oatka Creek, Cherry Valley, Union Springs as applied in Greene, Fayette, etc. PA
- restrict Purcell as informal name in subsurface.
- as in central PA, Purcell retains its current status as member until further work is done.
- retain PA "Skaneateles" as Marcellus (lithologic consistency)

Mahantango Formation

• in lieu of other names used in PA (Ludlowville, Moscow, Stafford, etc.)

Geneseo/Burket

• demarcate lateral transition and basis

Remaining Organic-rich Shale

- follow PA convention: transition from Mbr to Fm beyond eastward extent of host Fm
- recognize "Pipe Creek" and "Dunkirk" as informal beds in WV.
- do not recognize "Perrysburg Fm."

WVGES-NETL Resource Assessment

122 tcf GIP in Marcellus in WV: Pool et al., 2013.

Pressure: WVGES Oil and Gas (as reported by operator)

• new data: re-evaluation: is pressure a f(TOC)??

Porosity: From Logs: bulk density/density porosity: V_{ker} correction. Ambrose correction.

• new opportunities for core calibration?

Saturation: From Logs: Simandoux (A = 1.0; M= 1.7; N = 1.7); V_{ker} correction.

• recent work (Douds et al., AAPG) \rightarrow logs and cores overstate S_w ; Set at consistent low value?

Formation Volume Factor: Standard equation

• gas density correction – need pore size distribution information

Adsorbed Gas: TOC from DlogR (Passey); LOM; check with literature (WVU)...TOC converted to GC; calibration to EGSP data

• TOC from GR (Marcellus)... new opportunities for core calibration?

"Pay" Thickness: From log correlation

• new approach to unit definition: from lithologic unit to "flow unit"

WV Shale "Plays"

GIP in units within the Contributing Rock Volume: CRV function of occurrence of frac barriers....

Marcellus Shale Plays in WV

From geologic units to "flow units"

Thank You

Correlation at Reservoir Scale

Gani and Bhattacharya, 2005

Local Scale Timelines

Point Bar Deposits: Dinosaur Park, Alberta

PA Stratigraphy

Harper et al., 2017

